GRADUATION DAY

Friday, 15th March, was a memorable occasion for 590 graduands, who were presented to the Chancellor, Sir Alister McMullin, by their Deans and admitted to their degrees.

It was only the second time the Great Hall had been used for Graduation Day ceremonies and relations and friends of the new graduates filled every available seat.

At the morning ceremony degrees were conferred in the Faculties of Architecture and Arts. The occasional address was delivered by Emeritus Professor B. Newton-John, who had commenced his retirement a week previously.

Degrees in the Faculties of Applied Science, Economics and Commerce, Engineering, Mathematics and Science were conferred in the afternoon when the Vice-Chancellor delivered the occasional address.

The graduands were given a reception by the Chancellor in the Union on the night preceding Graduation Day and on the night of Graduation Day a ball was conducted by Convocation in the Great Hall.

Professor Newton-John, speaking to the crowd at the morning ceremony, said:

"Mr. Chancellor, when I retired from this University ten days ago, I made two resolutions: the first, that apart from sneaking into the Library for occasional intellectual pabulum, I would not visit here for three years, because elderly gentlemen who hang about their former places of employment are unmitigated nuisances; the second that I would never again give a public address, in token of which I consigned about 15 kilograms of trivia to the waste-paper basket. And yet here I am at my fourteenth graduation day in Newcastle, giving the address instead of criticising it from the comfort and safety of a seat behind the speaker. There is only one essential part of a graduation address, and that is the welcome to the new graduates, "So let me welcome and congratulate you, the new doctors, the new masters, the new bachelors, and particularly those among you who have done your course as part-time students. I have seen what courage and determination is needed to undertake a University course when one has already done a day's work and has perhaps family commitments as well - and I think my congratulations should extend to the spouses of some of you, for having seen you through. No doubt, in the interval between your learning your results and the formal confirmation of them at today's ceremony, the glow of success has faded a little, for you have come into contact with a world, which far from owing you a living, as some of you once thought, requires that you earn it - unless of course you join the ranks of the voluntary unemployed. That is less likely, I take it, now that you have a document that testifies that you have successfully leapt the hurdles placed in your path by ingenious academics.

"Your testamur opens doors which were formerly closed to you. The question is, on to what prospects do they open? What sort of world are you entering and how do you find happiness in it?

"The prospects are both exhilarating and terrifying. The exhilaration comes from the potential for advancement in science, the terror from technology. There is no need for me to enlarge on that, except to say that it is likely, within your life time, that the scientists will encroach on the philosopher's territory, and that will bring about a spiritual and intellectual upheaval comparable with those caused by Galileo or Newton, Darwin or Einstein.

"Last year there started at Cambridge a fantastic project that is planned to take twenty years to complete. A group of molecular biologists are taking to pieces the successive generations of a tiny worm - and I may say that since this worm is monosexual, its genetics are simple and its generations frequent - in the belief that eventually they will understand what they call the complete wiring diagram of one living organism. That achieved, we could be sure that within a foreseeable time thereafter, the scientists would be able to describe in chemical and electronic terms what it means to be a conscious, sentient human individual. I envy you the excitement that that achievement will generate. I do not envy you the effects of the progress of technology over the same period.

"For technology is know-how, not understanding. You can have a vast amount of the one and none of the other, as is well known to the family of any physicist when the washing-machine goes on the blink. Technology is a blind anonymous force and it is conditioning our way of life whether we like it or not.

"Technology was one of the reasons why our grandparents believed that man had made and was making progress. Indeed we have. In the last fifty years we have produced the biggest wars and the worst famines that history has ever seen: the spread of literacy, which our grandparents believed would lead to the reign of reason has meant filling our newspapers and magazines and TV screens with advertisements so fraudulent and lying that the old alchemists..."
look like children at play. Our lives have been fragmented and trivialized in a way that our grandparents could not conceive. And over all the scale of time, the threat of the total collapse of society depends on the survival of the small pockets of human knowledge and technology in the destruction of us all.

"But let us be gloriously optimistic. Let us believe that the Greek ideal of breaking the chains that they sought to fight their wars with obsolete weapons in other people's backyards and let us remember that we all are part of the continuing struggle of the world to live in peace. The first thing that strikes one is that there is no pervading, enduring life style any more. The great social anchor, the close-knit culture from the family, the community, and the church, is gone. Everywhere we see fragmentation, atomism, and fragmentation into minority groups, each indifferent to, or contemptuous of, the others. Not so long age our society seemed childlike, young people and adults. Now there is a series of shifting categories—teen-agers, teenagers, young marrieds, oldies, wrinklies, and of course students, who now form a distinct social group. And this group, which refers to itself generically as kids, has its own subgroups, as you well know. One sad result of all this is that communication between groups separated by decades is as difficult as it was previously between epochs.

"An obvious example of cultural fragmentation in the fact that the great, universal languages are not used any more. The great, universal languages are not used any more. The gaps that were once bridged by the novel, the newspaper, the comic strip, are now bridged only by the very fact that they are bridged. The gaps that were once bridged by the novel, the newspaper, the comic strip, are now bridged only by the very fact that they are bridged.

"Some of you who are going to continue at a University or not? I am sure, or rather I trust, that you will have some point of support within himself, that you have succeeded where your years of study. Many people will tell you that the years of your stay were not only 17 academics all told — and to some extent. At this morning's graduation ceremony is always an occasion of recollection and change again, and this brings us with you to the University, to the hope of opportunity to congratulate those being presented to the Chancellor.

"It is going to make any difference to you, whether you are to remain here (who know) or whether you are to be a member of the avant-garde. Be constant. Your student politician whose existence depends on not listening but on confronting at any cost. While one is an undergraduate can turn out to be essential when one has grown up; and the satisfaction thing about having lived in a University is that the whole of life, can be seen as a process of growing, that it is, a series of vertical stages that may be forgotten or superseded. Your paper qualifications are not the goal of your studies. They are the means to an end. Many people will tell you that, particularly those who do not have a University education. This is especially true of the University, whose alumni are in the main non-graduates.

"You will have your voice to be heard, that they will take full advantage of their opportunities. The Vice-Chancellor addresses the afternoon ceremony.

"I count myself fortunate to have come to Australia at a time of great opportunity and my own success of those opportunities. Newcastle has given me a full, exciting and satisfying life. Without hardworking colleges it is the crux of ability I could have achieved little on my own and it is a sobering thought to reflect on the winds of change which have so much transformed the human and physical environment of Newcastle and the Hawkesbury Valley through the development and mounting success of the University.

"Before closing the ceremony, the Chancellor paid tribute to the outstanding service given by Professor Amschul, who has been the University's only Vice-Chancellor and who was attending his last conferring of degrees ceremony of the University.

"Architects:

Bachelor of Architecture

- Wayne Allen (Hons, B.Arch, 1974)
- Ronald Arnold (B.Arch, 1974)
- Frank Walker (Hons, B.Arch, 1974)
- John Peters (B.Arch, 1974)
- Geoffrey Cyril Martin (B.Arch, 1974)
- Sydney Lomas (B.Arch, 1974)
The University was the venue for the Eighth Annual University Graduate Conference over the Australia Day holiday weekend. The Conference brought to Newcastle more than 20 representatives of Convocations, Alumni Associations and other graduate bodies from universities throughout Australia. The delegates were accommodated in Edwards Hall.

The Conference was opened by Professor, Professor K.R. Datta and Mr. J.K. Ellis were the principal speakers at a seminar on "Continuing Education". At the Conference Dinner the Vice-Chancellor delivered the conference address. The delegates were taken on an outing to The University of Newcastle Technical College. He subsequently joined the staff of the School of Electrical Engineering in the N.S.W. University of Technology at Broken Hill before accepting an appointment as Research Officer with the United Kingdom Atomic Energy Commission and the Royal Society for Research in 1966. Following his return to academic life in 1960, Professor George became Associate Professor in Electrical Engineering at the University of Sydney and in 1969 was appointed to the P.N. Russell Chair of Mechanical Engineering in the University of Sydney. Originally in the area of nuclear energy, Professor George's research interests have moved into the field of direct energy conversion and particularly into the area of solar energy, and he is currently a consultant to the Federal Minister of Minerals and Energy in this area of growth. National and international interest, Professor George is a member of the Institute of Defence Science and of the Academy of Science and has been invited to speak at various conferences around the world. His work is published in more than 20 scientific papers and he is a member of the editorial board of the Journal of Nuclear Science and Technology.

Mr. Chancellor, in presenting Sir Macfarlane Burnet, Nobel Laureate, Doctor of Medicine from the University of Melbourne, Fellow of the Royal Australian Academy of Science, member of the Institute of Biology, Fellow of the Royal Society, Fellow of the Royal College of Physicians and of the Royal College of Surgeons, and President of the Australian Academy of Science, expressed his delight in presenting Sir Macfarlane Burnet to the University. Sir Macfarlane Burnet was born in Melbourne in 1908, the son of a prominent physician, Sir Charles Burnet. He received his medical degree from the University of Melbourne in 1931, and completed his postgraduate training in London, where he worked with Sir Alexander Fleming on the development of penicillin. After returning to Australia, he became a consultant in infectious diseases at the Walter and Eliza Hall Institute of Medical Research in Melbourne, and later became the head of the Department of Immunology.

Professor George has been actively involved in administration within the University of Sydney, where he is a Fellow of the Senate and Chairman of the Professorial Board.

Professor George has been a member of the Senate and Chairman of the Professorial Board. He was appointed as a Fellow of the New South Wales University of Technology in 1970-1971, and as the President of the University of Sydney in 1972.

Professor George has been actively involved in administration within the University of Sydney, where he is a Fellow of the Senate and Chairman of the Professorial Board. He was appointed as a Fellow of the New South Wales University of Technology in 1970-1971, and as the President of the University of Sydney in 1972.

Professor George has been actively involved in administration within the University of Sydney, where he is a Fellow of the Senate and Chairman of the Professorial Board. He was appointed as a Fellow of the New South Wales University of Technology in 1970-1971, and as the President of the University of Sydney in 1972.
"Man may be everything that Hamlet said he was — "noble in reason, infinite in faculty", and all the rest — but he is still a mammal, the direct descendant of a specie of replicating pro-
"totype on the edges of some primordial sea not
more than 3,000 million years ago. That specie was elaborated and modified by evolution over
those billions of years to trace a path of develop-
ment whose near final steps were an ape, no
less distinguished from today's gorilla and chimpanzees, and the human being, to whom we know nothing more than that he used
weapons, made fire, and was a cannibal. The
unfathomable results of this evolution are with
us ever, and every moment of our lives, they dominate our
behaviour, our abilities, and our intelligence, just as much as the structure of our bodies and
their nutritional, sexual, and emotional needs. We have developed, like other higher animals,
culture and ritual, to make social life effective and tolerable, and, unlike any other animal, we
have invented language and writing to twist the
human life and the world in which it has provided the
research needs, and for which it has provided the
money — in the first instance to train men and
women to a professional level of competence in
one or other field of biology. Essentially, they
must be given an adequate background against
which they can be trained on the job in any one
of a thousand specialist roles. The great
group of students will undoubtedly be fitting themselves to become teachers of biology at
secondary or tertiary levels. No one is more
important in today's world than those who
teach the teachers, and if my dream of perceiving
the community with a sense of the import-
ance of human biology is ever to come true, they
must lead the way.
"The other accepted function of a Univer-
sity is the advancement of knowledge by ex-
perimental research and by the scholarly pre-
station of its results in texts and reviews,
and by teaching processes which make about
research in a University department. One
springs from a conversation I had with Florey many years ago, which I have never forgotten.
We were talking about medical research and the
problems of the young medical graduate coming
into the game. In Florey's view, anyone lured
to try should be given an opportunity — but he
insisted that the Professor of Research Director
sponsoring that beginner must accept a heavy
responsibility. During the preliminary phase of
one or two years he must assure himself that
his new recruit has the qualities which will
allow him to find satisfaction and reasonable
success in his research career. Once the decision
is made that he should burn his bridges and go
forward, his sponsor must be prepared to pro-
vide all the help in reason to guide and support
him on the path to senior degree, post-doctoral
fellowships, and so on, until he attains full
academic stature. Perhaps that is not quite so
important now as it was 30 or 40 years ago, but
mutual loyalty within a research laboratory still
helps enormously.

"Research can bring important practical
benefits, it can be a fascinating game of chess
against a tough opponent I remember Ein-
stein's epigram, that in such games you can
at least be certain that the Good Lord never cheats!
And for the right person it can bring satisfaction,
the good opinion of one's peers, and a sense of
belonging to the brotherhood of man that can
not easily be found in any other calling.
"I wish this School, and those who will work in it, every success in the three fields I have touched
on:
"The education of the community to an
appreciation of human biology.
"The training of professional biologists and teachers of biology, and
"The advancement of knowledge by research and scholarly endeavour."

Mr. Dan Martin has taken up his appoint-
ment as Business Manager for TUNA Limited,
the University's educational and research organ-
isation, Mr. Martin will be responsible for co-
ordinating and expanding TUNA's projects,
initially Mr. Martin's appointment is a part-
time one, his office is Room 206 on the second
floor of the Engineering Faculty building and his
'phone extension is 632. If he does not answer,
messages can be directed to the Secretary for
the Department of Mechanical Engineering.
An accountant Mr. Martin retired as General
Manager of John Lyght (Aust.) Limited's
Newcastle works in February, 1972. He is a
Director of Newcastle Gas Company Limited,
Secretary of Newcastle Businessmen's Club,
and Treasurer of Newcastle Division of the Aus-
tralian Institute of Management.
"In the early stages of his appointment Mr.
Martin will visit departments of the university
to familiarize himself with the facilities that
Tuna employs for its projects. He said he
would be happy to discuss any proposals of a re-
search or an educational nature which come
within Tuna's scope,

Mr. Martin has been completely justified in 1973-74, Murray
Valley encephalitis is back again after an al-
most complete absence of 23 years. It is, I
think, an important example of the fact that
epidemiology can, in its own way, be as
just as valuable as the more prestigious field or
"The other point I want to make is that a
research job is not completed when all the
laboratory experiments have been tidied up
and the paper sent off to the chosen Journal. I
can mention one example from my own experience
which may be topical enough to interest you.
Concerns our work at the Hall Institute of
1950-51 on that summer's epidemic of Murray
Valley encephalitis. Anderson, French and
their collaborators isolated the virus and worked
out how it was spread by mosquitoes and birds.
We were talking about medical research and the
problems of the young medical graduate coming

As the opening of the Biological Sciences building (from left), the Vice-Chancellor, Professor Boehtcher,
Sir Macfarlane Burnet and the Chancellor.

Mr. Martin receives his honorary doctorate from the Chancellor.
Dr. Johnston at the controls of the electron microscope.

NOVA A 210 KNC computer, cost in excess of $1,000,000, together with an existing A.E.L. EM6G transmission electron microscope, it forms the nucleus of the University's Electron Microscope Unit which is situated, initially, in an air-conditioned section of the Metalurgy Building.

The new equipment is being used in a wide range of disciplines, as well as to carry out research in a number of fields. It is being used in the study of 20 times to more than 100,000. The very high magnification, such as the EM6G, is analogous to a light television raster. From each position of the raster, which form part of the microscope, a spot, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that element. Since these X-rays have energies or wavelengths which are characteristic of that element, it is possible to calculate the signal in a cathode ray tube, which is stroke, electrons are emitted and back-scattered, enabling the distribution of an element to be used to show areas rich in that ele
rowed building to which it added further facilities as they were needed. While normal life is proceeding a large and attractive site is being prepared for new buildings about twenty miles from Kuala Lumpur and in a more rural setting. This is another similarity to our own case, but it will be several years before Univer-siti Kebangsaan will be able to move to new, specially constructed buildings for its own use. If the present favourable economic progress continues in Malaysia, there will no doubt be adequate provision for building and equipping a new Psychology Department. Making rec-ommendations for such facilities was an easier task than suggesting ways in which the other problems could be solved.

There appear to be three ways at least in which outside assistance could help in the sol-ution of the problems of staffing and instru-mentation. Firstly qualified research workers could carry out research in Malaysia in co-operation with local psychologists and arrange for the findings to be published in the Malay language. Although this may be a slow process it will gradually lead to the development of instruments which have been prepared in, or translated into Malay and validated there. Furthermore some knowledge will be available in Malay about the appropriateness of psycho-logical theories when applied to Asian cultures. A second possibility uses the external ex-aminer system. Univer-siti Kebangsaan has always made use of external examiners, usually from other countries, to assist departments in establishing and maintaining appropriate stand-ards. One of the problems in applying this practice is again that of language, and external examiners unfamiliar with Malay language have problems in giving appropriate advice. In some subjects examiners or advisers, as they might more appropriately be termed, have learned the Malay language and given occasional lectures in that medium. In the case of Psychology there is obviously an advantage to the adviser in having at least a reading knowledge of the language if he is to make use of his visits there to foster joint research.

Finally universities in other countries could accept graduate students in Psychology who are Honours graduates in related disciplines and have completed some Psychology subjects as part of their degree. Such students, of course would be required to complete preliminary undergraduate work before proceeding to re-search projects for their theses. There are obvious difficulties in this solution both for students and the universities who receive them. These difficulties can be reduced if there is opportunity for the staffs of the universities concerned to consult before the student is accepted. Without co-operation of this kind it is difficult to see how qualified staff can be obtained for Psychology Departments in a number of Asian countries in which it is not currently taught to any extent.

The stresses produced by rapid development in Asian countries often lead to behavioural problems which hamper this development. In Malaysia there appeared to be some awareness of these problems, for example, in the field need for family counselling and other forms of psy-chological service. However, little attention is paid to these problems by nations providing aid for development. For example the Aus-tralian High Commission in Kuala Lumpur as-serted that Australia is interested in assisting with university co-operation in Agriculture and Engineering but not with work in the Behavioural Sciences.

CONVOCA TION

Professor Ken Dutton was elected Warden of Convocation at the annual meeting on 9th May. Professor Dutton will hold office for a term of two years and succeeds Mr. Warren Derkenne, a Newcastle solicitor, who had been Warden since 1971.

Professor Dutton is Dean of the University's Faculty of Arts. He is a First Class Honours graduate in French in the University of Sydney and obtained his Master of Arts degree and the University Medal in the same University. He was awarded the degree of Docteur de l'Universite site with the grade "tres honorable" by the University of Paris in 1964.

Before taking up his appointment as Head of the Department of French at the University of Newcastle in 1969 he was, first, a lecturer in French in the University of Sydney, and, subsequently, a senior lecturer in French in Macquarie University, which he also served as Professor B. Newton John and Mr. LP. Talty resigned. An election resulted in, Mr. J.K. Ellis being the principal speakers at a seminar on "Continuing Education". At the Conference Dinner the Vice-Chancellor delivered the address of the Standing Committee purchased 100 copies and distributed them to local schools.

Sub-committee are investigating the confer-ring of an annual award by Convocation for an outstanding graduate of the University and the holding of a Graduates' Ball in the Great Hall.

The following speakers addressed the sem-inar: Mr. Justice Hutley, of New South Wales Supreme Court, Court of Appeal; Mr. D.K. Donald, Chairman of the Education Committee of the Law Society of New South Wales; and Professor K.E. Lindgren, Professor of Legal Studies and Head of the Department of Legal Studies, University of Newcastle.

It is proposed to publish the proceedings as was done for the seminars which considered the Relationship Between Colleges of Advanced Education and Universities and The Establish-ment of a Medical School in Newcastle (both held in 1972).

Convocation and the University were hosts for the Eighth Australian University Graduate Conference over the Australia Day holiday weekend. The Conference brought to Newcastle more than 20 representatives of Convocations, Alumni Associations and other graduate bodies from universities throughout Australia.

The Minister for Education in N.S.W. (Mr. Willis) opened the conference. Professor Dutton and Mr. J.K. Ellis were the principal speakers at a seminar on "Continuing Education". At the Conference Dinner the Vice-Chancellor delivered the address of the Standing Committee purchased 100 copies and distributed them to local schools.

Mr. Errol Hodge, a producer for the Aust-ralian Broadcasting Commission, addressed Convocation's general meeting last November on "Living with the Neighbours", an account of his experience as the A.B.C.'s Representative in Jakarta. Mr. Hodge was educated at Newcastle Boys' High and the old Newcastle University College and worked as a journalist in Newcastle. There was a good audience to hear Mr. Hodge and Mr. P. Marquet proposed a vote of thanks which was warmly accepted.

At the meeting of Standing Committee 4th April, Mr. J.P. Talty, the Immediate Past Warden, who attended his last meeting of the Committee before retiring on 9th May, was thanked for the outstanding service he had given to Convocation. Mr. Talty was Warden from 1969 to 1971 and President of the Australi-an University Graduate Conference in 1973.

The Secretary, Mr. E.J. Buckman, reported that 1,350 people had attended the 1974 Grad-uation Ball. This was a record. The high attendance was due to the ball being held in two buildings on the campus - the Great Hall and the Union.

Convocation supported the publication of "Hunter Valley Poets", a book of poetry edited by Assoc. Professor N. Talbot. The Standing Committee purchased 100 copies and distribut-ed them to local schools.

Sub-committee are investigating the confer-ring of an annual award by Convocation for an outstanding graduate of the University and the holding of a Graduates' Ball in the Great Hall.