LAYING OF THE FOUNDATION STONE OF THE ENGINEERING COMPLEX

L. to R.: Professor J. W. Roderick, President of the Institution of Engineers, Australia, the Chancellor, The Honourable Sir Alister McMullin, the Vice-Chancellor, Professor J. J. Auchmuty, the Dean of the Faculty of Engineering, Professor A. J. Carmichael, and Brigadier J. M. C. Corlette, a Foundation Member of the Institution.

The Foundation Stone of the Engineering Complex was laid on Friday, June 6 by Professor J. W. Roderick, M.A. (Cantab.), M.Sc., Ph.D. (Bristol), F.A.A., in his capacity as President of The Institution of Engineers, Australia.

The ceremony was to have been held on the site of the Engineering Complex but showery conditions caused a change of plans. Most of the proceedings, including the admission of Professor Roderick to the Honorary Degree of Doctor of Engineering, took place in the Main Lecture Theatre. About fifteen people out of a congregation of more than one hundred braved the light rain to watch the outdoor unveiling of the Foundation Stone, the gift of the Newcastle Division of The Institution of Engineers, Australia, to mark the fiftieth anniversary of the founding of their organisation. Brigadier J. M. C. Corlette, C.M.G., D.S.O., V.D., Chevalier Legion d'Honneur, B.E. (Sydney), M.I.E.Aust., Hon. M.I.E.Aust., F.A.P.I., an Honorary Graduate of The University of Newcastle, was a Foundation Member of the Institution and still participates in the activities of the Newcastle Division. A week-long celebration in Newcastle, including a Symposium and a Dinner, was held to mark the Jubilee.
In presenting Professor Roderick to the Chancellor for admission to the University of Newcastle, Mr. J. C. Carpenter said:

Mr. Chancellor,

I present to you Jack William Roderick, President of the Institution of Engineers, Australia, who has contributed so much to the development of engineering as an academic discipline and to the advancement of the engineering profession. He has been a member of the Institution of Engineers, Australia, since 1955 and has been Chairman both of the Sydney Division and of the Board of Examiners for this Institution. He has been a member of the Board of Directors of the National Engineering Board and a Governor of the Australian National University. He is also a member of the Defence Research and Development Board, a Vice-President of the Institution of Engineers, Australia, and a member of the Advisory Council of the C.S.I.R.O., Chairman of the Examinations Committee of the Department of Local Government of New South Wales and a member of the Council of the Australian Academy of Technology and Engineering, of which he is currently President. He has been a recipient of the Miller Prize, the James Forest Medal, a Cameron Grant and the Gotfrey Medal. His services have been sought as a consultant to many government departments and he has been awarded an Honorary Doctorate of Science by the University of New South Wales and an Honorary Doctorate of Science from Cambridge University.

In 1951 he came to Australia to take up his present position as a consultant to the New South Wales Hydro-Electric Authority, and in 1954 he was appointed Director of Engineering of the New South Wales Government. He has been a member of the Board of Directors of the National Engineering Board and a Governor of the Australian National University. He is also a member of the Defence Research and Development Board, a Vice-President of the Institution of Engineers, Australia, and a member of the Advisory Council of the C.S.I.R.O., Chairman of the Examinations Committee of the Department of Local Government of New South Wales and a member of the Council of the Australian Academy of Technology and Engineering, of which he is currently President. He has been a recipient of the Miller Prize, the James Forest Medal, a Cameron Grant and the Gotfrey Medal. His services have been sought as a consultant to many government departments and he has been awarded an Honorary Doctorate of Science by the University of New South Wales and an Honorary Doctorate of Science from Cambridge University.

In 1951 he came to Australia to take up his present position as a consultant to the New South Wales Hydro-Electric Authority, and in 1954 he was appointed Director of Engineering of the New South Wales Government. He has been a member of the Board of Directors of the National Engineering Board and a Governor of the Australian National University. He is also a member of the Defence Research and Development Board, a Vice-President of the Institution of Engineers, Australia, and a member of the Advisory Council of the C.S.I.R.O., Chairman of the Examinations Committee of the Department of Local Government of New South Wales and a member of the Council of the Australian Academy of Technology and Engineering, of which he is currently President. He has been a recipient of the Miller Prize, the James Forest Medal, a Cameron Grant and the Gotfrey Medal. His services have been sought as a consultant to many government departments and he has been awarded an Honorary Doctorate of Science by the University of New South Wales and an Honorary Doctorate of Science from Cambridge University.

In 1951 he came to Australia to take up his present position as a consultant to the New South Wales Hydro-Electric Authority, and in 1954 he was appointed Director of Engineering of the New South Wales Government. He has been a member of the Board of Directors of the National Engineering Board and a Governor of the Australian National University. He is also a member of the Defence Research and Development Board, a Vice-President of the Institution of Engineers, Australia, and a member of the Advisory Council of the C.S.I.R.O., Chairman of the Examinations Committee of the Department of Local Government of New South Wales and a member of the Council of the Australian Academy of Technology and Engineering, of which he is currently President. He has been a recipient of the Miller Prize, the James Forest Medal, a Cameron Grant and the Gotfrey Medal. His services have been sought as a consultant to many government departments and he has been awarded an Honorary Doctorate of Science by the University of New South Wales and an Honorary Doctorate of Science from Cambridge University.

In 1951 he came to Australia to take up his present position as a consultant to the New South Wales Hydro-Electric Authority, and in 1954 he was appointed Director of Engineering of the New South Wales Government. He has been a member of the Board of Directors of the National Engineering Board and a Governor of the Australian National University. He is also a member of the Defence Research and Development Board, a Vice-President of the Institution of Engineers, Australia, and a member of the Advisory Council of the C.S.I.R.O., Chairman of the Examinations Committee of the Department of Local Government of New South Wales and a member of the Council of the Australian Academy of Technology and Engineering, of which he is currently President. He has been a recipient of the Miller Prize, the James Forest Medal, a Cameron Grant and the Gotfrey Medal. His services have been sought as a consultant to many government departments and he has been awarded an Honorary Doctorate of Science by the University of New South Wales and an Honorary Doctorate of Science from Cambridge University.
NEWCASTLE UNIVERSITY UNION

The second stage of the University Union was completed for the beginning of Second Term. On the main floor, the new Common Room Hall, fully carpeted, has been opened to the students, one of which is equipped as a cinema projection booth. The lunchtime screening of films is proving most popular.

On the floor below is a new games complex, also fully carpeted. The Billiards Room and the Table Tennis Room each have four tables. The squash courts in the basement have been made available for use by the public. They are open from 9 a.m. to 10 p.m. except during evenings, when the Times Games Room may be divided into two rooms of equal size, fully carpeted.

Mr. Warren David Tressider, who graduated from Newcastle University in 1964 as a Bachelor of Arts, was this year awarded a two-year Fellowship at Greenbank Radioastronomy Centre, Virginia, USA.

Mr. Lancelot Knox Donaldson-Evans, who graduated from the University in 1962 as a Bachelor of Arts with Honours Class I, was named "Miss W.U.S." for raising the most money for that organisation.

Miss Susan Richards, a Second Year Arts Student, was named "Miss W.U.S." for raising the most money for that organisation.

Two 1958 Arts Graduates of the University, Major and Mrs. Paul McLean, will spend the next two years overseas. Major McLean, formerly Deputy Assistant Director of Army Education at the Australian Headquarters, Canberra, will be on an exchange tour with the Royal Army Education Corps in Beaufort, England and Rheinfelden, West Germany. Mrs. McLean was formerly Nola Thomas of Hamilton South.

Mr. A. P. Sekus, who graduated from the University in 1968 as a Bachelor of Science with Honours Class II Division (i) in Physics, is studying for his Master of Science Degree in Theoretical Physics at Princeton University where he has passed the Graduate Preliminary Examination. He has accepted a two-year Fellowship at Greenbank Radioastronomy Centre, Virginia, USA.

Dr. R. N. Manchester, B.Sc. (Camb.), was this year admitted to the degree of Doctor of Philosophy by the University. He has accepted a two-year Fellowship at Government Radioastronomy Centre, Victoria, Australia.

Professor C. Hart, Head of the Department of English, visited Dublin from 10-16 June to attend the Second James Joyce Symposium of which he was one of the organizers. He chaired the first Fincham Week panel and delivered a short paper on methods of approach to the book.

Miss Judith Anne Wilson of Kabibah, who graduated from the University of Newcastle in 1965 as a Bachelor of Science, was this year awarded a three-year scholarship to visit the University of Edinburgh to study child welfare and social work.

A former Graduate of the University, Dr. Ross Robinson, B.A., Dip. Ed. (N.E.), M.A. (N.S.W.), Ph.D. (British Columbia), has joined the staff of the School of Geography at Wellington University College after spending three years in Canada and two years in Geneva. Whilst at the University of British Columbia on a Fellowship he was awarded a $10,000 grant by the Canadian Government to carry out a study of the shipping and cargo movement of the port of Vancouver. For this research at the University of British Columbia conferred upon him the degree of Doctor of Philosophy, Dr. Robinson was invited to Geneva to consult with the Secretariat of the United Nations Conference on Trade and Development and later accepted a position with this body to study port facilities in developing countries with a view to more efficient handling of shipping and cargoes.

The Secretary would also be pleased to receive information which might assist in ascertaining the present address of the following graduates:

ABBED, A. T., 1964 B.Sc.
ABDELLAH, M. S., 1964 B.Sc.
ABDELLAH, M. S., 1964 B.Sc.
ABDEL-GOUR, M. S., 1963 B.Sc.
ABDEL-RAHMAN, A. M., 1964 B.Sc.
ABBOTT, B. A., 1964 B.Sc.
As part of the U.S. Navy's "OPERATION DEEP FREEZE" in Antarctica, the multipurpose research vessel Eltanin makes regular voyages to the Antarctic and surrounding waters. The ship is named after a star in the Zodiac group, she displaces 3643 tons, measures 509 feet across and 246 feet in length. Her complement consists of 200 officers and men, 30 crew members, up to 40 scientists and 10 technicians. The Eltanin carries the most advanced scientific equipment, among others a magnetometer, two precision depth recorders, two seismic recorders (probes) and a digital computer. For geographical investigations the ship has a modified Ewing point, consisting essentially of a 1200 lb. lead weight, "bomb", 20 feet pipes with inner plastic liners and a releasing mechanism.

The general objective of the marine geology program was to take core samples in the South Pacific and Southern Indian Ocean as well as in the Continental Shelf areas of Antarctica. Nine cores were taken in the vicinity of New Zealand to be used for determining the distribution of cosmic spheres and deposits from the ocean floor.

The Eltanin left from Wellington, New Zealand and proceeded to 47°59'S 125°35'W, then to the Bailly Islands Group and eventually in a south-westerly direction to sail along the continental margin of Antarctica in a "zig-zag" manner.

Cores were taken wherever geophysical instruments indicated favourable conditions with regard to the thickness of sediments. The most promising area was about 3100 fathoms (18624 m) south-west of New Zealand near a fault line in a subduction zone (about 200 nautical miles or 371 km south-west of Macquarie Trench). The Eltanin has a 2 inches (5 cm) diameter core barrel and a 1/2 inches (0.76 cm) diameter piston core. The core barrel had been obtained (3100 fathoms or 3710 m) from a sub-bottom profiler, which measures the total depth recorded will be that recorded plus some multiple of the total scale value.

With a sound source of 12 KC, the wave length in water is only a few inches, and reflections can be returned from nearly any object that the sound can go through. For computing the total travel time, the signal will be recorded by a later stylus, and the total depth recorded will be that recorded plus some multiple of the total scale value. For geological investigations the ship has a modified Ewing point, consisting essentially of a 1200 lb. lead weight, "bomb", 20 feet pipes with inner plastic liners and a releasing mechanism.

The next core (7) is a sample of the bottom of the continental rise. It is a sandy silt with fine-sized fragments. The upper part contains foraminifera, and bivalve and echinant calcareous remains of organisms, and bioclastic rock fragments were found in it. The bottom portion of this core is much coarser, and very loose. The rock fragments range from brown mud to dark-brown sand. The core was taken on February 19, 1969.

A great deal of time and energy was spent in recovering cores. Two attempts had to be made for core 19. At the first try one of the two pipes was lost because it hit the hard rock, and in order to pull it free the screws in the coupling. The second attempt was successful.

During Cruise No. 37 more than 600 samples were made for scientific observations and investigations; these cores are called "stations" and are numbered in chronological order. The time spent in the South Pacific and Southern Indian Ocean, and in the Continental Shelf area of Antarctica. Nine core were taken in this area. Three of these units were built that will supply the side echoes, but the Eltanin does not have any of these units.

Very often there will be shallow scattering layers (clusters of organisms, etc.) in the water which provide good reflecting areas and appear on the records as hyperbolas.

The PDR Watch has the responsibility of monitoring the PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunctions. It is customary to take two time signals on the PDR every 15 minutes. One of these is when the ship is underway, and the other 30 minutes when the ship is an station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The readings from the PDR control nearly every scientific operation of the ship except the meteorological work. The PDR Watch, together with the profiler the PDR record determinate positions of bottom features. The PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunction. It is customary to take two time signals on the PDR every 15 minutes. The ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The readings from the PDR control nearly every scientific operation of the ship except the meteorological work. The PDR Watch, together with the profiler, the PDR record determines positions of bottom features. The PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunction. It is customary to take two time signals on the PDR every 15 minutes. The ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The PDR Watch has the responsibility of monitoring the PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunctions. It is customary to take two time signals on the PDR every 15 minutes. One of these is when the ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The readings from the PDR control nearly every scientific operation of the ship except the meteorological work. The PDR Watch, together with the profiler, the PDR record determines positions of bottom features. The PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunction. It is customary to take two time signals on the PDR every 15 minutes. The ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The readings from the PDR control nearly every scientific operation of the ship except the meteorological work. The PDR Watch, together with the profiler, the PDR record determines positions of bottom features. The PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunction. It is customary to take two time signals on the PDR every 15 minutes. The ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The readings from the PDR control nearly every scientific operation of the ship except the meteorological work. The PDR Watch, together with the profiler, the PDR record determines positions of bottom features. The PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunction. It is customary to take two time signals on the PDR every 15 minutes. The ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The readings from the PDR control nearly every scientific operation of the ship except the meteorological work. The PDR Watch, together with the profiler, the PDR record determines positions of bottom features. The PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunction. It is customary to take two time signals on the PDR every 15 minutes. The ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The readings from the PDR control nearly every scientific operation of the ship except the meteorological work. The PDR Watch, together with the profiler, the PDR record determines positions of bottom features. The PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunction. It is customary to take two time signals on the PDR every 15 minutes. The ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The readings from the PDR control nearly every scientific operation of the ship except the meteorological work. The PDR Watch, together with the profiler, the PDR record determines positions of bottom features. The PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunction. It is customary to take two time signals on the PDR every 15 minutes. The ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The readings from the PDR control nearly every scientific operation of the ship except the meteorological work. The PDR Watch, together with the profiler, the PDR record determines positions of bottom features. The PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunction. It is customary to take two time signals on the PDR every 15 minutes. The ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.

The readings from the PDR control nearly every scientific operation of the ship except the meteorological work. The PDR Watch, together with the profiler, the PDR record determines positions of bottom features. The PDR unit, making proper entries, and bringing to the attention of the duty Electronics Technician any malfunction. It is customary to take two time signals on the PDR every 15 minutes. The ship is underway, and the other 30 minutes when the ship is at station. Hourly, the PDR Watch is expected to fill out a "station comment" report, This report includes (1) date; (2) speed and course of the ship (or DR[FTING, TRAWLING, STEERING); (3) joystick and (4) speed of water.
ELLIS AND AUROUSSEAU: TWO GREAT BENEFACTORS

So intense and widespread are the demands for current materials, both books and serials, in a new university library such as ours, that very little can be spent on older materials. Donations of older books are therefore always most warmly welcomed here. Collections such as those given to the library by Miss Campbell, Miss Morison, Professor Hartley, in recent years have considerably enriched our collections. Any gift of the rare materials of Australian history, so expensive now in the rare book markets of the world, is of major significance and importance.

The University of Newcastle is most fortunate in that two of Australia's most distinguished scholars have chosen to honour this University by donating to the University Library choice items from their private libraries, in both cases the fruits of at least half a century of devoted and scholarly collecting in their own subject areas.

Dr. Malcolm Ellis, historian, critic, polemicist and honorary Doctor of Letters of this University, had strong links here. For many years he encouraged and stimulated both staff and students, particularly in the Department of History, who gained much from a close association with this man who has been described as "the historian of early Australia." Before his death last year, Dr. Ellis had given to the library three valuable items of Australiana:

BIGGE, JOHN THOMAS: [Reports on the colony of N.S.W.] London, 1822-1823.

To the library Dr. Ellis bequeathed 97 additional items mainly in the field of Australian history, including—

COLLINS, DAVID: An account of the English Colony in New South Wales.

HAWKESWORTH, JOHN: An account of the voyages undertaken... for making discoveries in the Southern Hemisphere, 3 vols., London, 1773.

Richer even than the Ellis collection is the collection of Australian exploration recently donated to the University by Mr. Marcel Aurousseau, writer, geographer and historian. Mr. Aurousseau, now retired and living in Sydney, is a world authority on names, particularly geographical names. He was for 20 years Secretary of the Permanent Committee on Geographical names in London. During this time he wrote many essays on geographical names and in 1957 he published The Rendering of Geographical Names, a reference work for transliterators and map-makers. A journey through Spain in the late 20's resulted in what has been described as one of the finest travel books ever written, Highway into Spain, published in 1930. Of this book the Spanish author and philosopher, Miguel de Unamuno said—"It is the best thing I have read in English since the Bible in Spain. Thank you for the friendly justice you have done my country."

Since his return to Sydney in 1956, Aurousseau has been deeply concerned with seeing justice done for F. W. Ludwig-Leichhardt, a man whom he greatly admires. In 1968 the Hakluyt Society published in three volumes Aurousseau's edition of The Letters of F. W. Ludwig-Leichhardt, a collection of all Leichhardt's known letters. Aurousseau collected and edited them to establish a reliable text based on the original documents and has translated those not in English. This stands as the major work in Leichhardt scholarship.

Mr. Aurousseau, throughout his life, collected Australiana, with particular emphasis on Australian exploration by land and sea up to about 1860. Having resolved to hand this collection over to a major library in the State outside the metropolitan area, already served so well by the Mitchell Library in Australiana, Mr. Aurousseau was moved to choose the University of Newcastle as the permanent home for the collection he had with such devotion assembled. The Aurousseau collection comprises some 240 volumes and includes—

DAWSON, ROBERT: The present state of Australia, London, 1830.
LEICHHARDT, LUDWIG: Journal of an overland expedition in Australia from Moreton Bay to Port Essington, London, 1847.

The Ellis Collection and the Aurousseau Collection will in perpetuity adorn and enrich the library of the University of Newcastle. The late Dr. Ellis and Mrs. Ellis, and Mr. and Mrs. Aurousseau, visited the new Library last year and expressed their content at the arrangements made for the housing and display of the treasures entrusted to us.

The University Librarian, Mr. E. Flowers, examines one of the volumes of the Aurousseau collection.
(By courtesy of the Newcastle Morning Herald)